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We describe and test QMPE, an open source ANSI Fortran90 program for response 

time distribution estimation1.  QMPE enables users to estimate parameters for the ex-

Gaussian and Gumbel distributions, along with three “shifted” distributions (i.e., 

distributions with a parameter dependent lower bound), the Lognormal, Wald and 

Weibull distributions.  Estimation can be performed using either the standard 

maximum likelihood (CML) method, or quantile maximum probability (QMP: 

Heathcote & Brown, in press). We review the properties of each distribution and 

theoretical evidence showing that CML estimates fail for some cases with shifted 

distributions, whereas QMP estimates do not. In cases where CML does not fail, a 

Monte Carlo investigation showed that QMP estimates were usually as good, and in 

some cases better, than CML estimates.  However, the Monte-Carlo study also 

uncovered problems that can occur with both CML and QMP estimates, particularly 

when samples are small and skew is low, highlighting the difficulties of estimating 

distributions with parameter dependent lower bounds.  
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This paper describes and tests QMPE (quantile maximum probability 

estimator), an open source ANSI standard Fortran90 program for estimating the 

parameters (Θ) of continuous density functions f(Θ) commonly used to model 

response time (RT) data. QMPE extends Brown and Heathcote’s (2003) QMLE 

software, which fits only the three parameter ex-Gaussian distribution, to four new 

positively skewed distributions: the two-parameter Gumbel distribution and the three-

parameter shifted Lognormal, shifted Wald, and shifted Weibull distributions.  The 

shifted distributions are bounded below, which makes them attractive as models of 

RT. Like QMLE, QMPE can fit distributions using continuous maximum likelihood 

(CML) estimation, and quantile maximum probability (QMP2, Heathcote, Brown & 

Mewhort, 2002; Heathcote & Brown, in press) estimation. In the next section we 

describe the distribution functions fit by QMPE. We then describe the estimation 

methods, and demonstrate that in cases where CML estimation fails for shift 

distributions, QMP estimates are viable. Finally, we report the results of a Monte 

Carlo study that compares CML and QMP estimation in small samples.  

QMPE Distribution Functions 
Like Brown and Heathcote’s (2003) QMLE program, QMPE fits the ex-

Gaussian distribution, a positively skewed distribution produced by the convolution of 

a normal and exponential distribution (see Heathcote, 1996 for details). The ex-

Gaussian has three parameters, the mean (µ) and standard deviation (σ>0) of the 

normal component and the mean of the exponential component (τ>0). The parameters 

have a simple relationship to the first three cumulants, the mean (κ1), the variance (κ2) 

and the third central moment (κ3 = ( ) ( )∫ − dxxfx 3
1κ ) given by: 

κ1 = µ + τ  κ2 = σ2 + τ2  κ3 = 2τ3
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The third central moment is a measure of skew, and can be estimated by the method 

of moments formula: ( ) nxxi∑ −= 3
3κ̂ . The “Fisher Skew” measure, 2/3

231 κκγ = , 

is also often used to quantify distribution asymmetry as it a dimensionless quantity 

which is invariant to scale changes. Figure 1a shows three examples of ex-Gaussian 

distributions.  

Woodworth and Schlosberg (1954) suggested the Lognormal as an empirical 

approximation to RT distributions. As its name implies, the logarithm of a 

Lognormally distributed random variable is distributed normally (equivalently, an 

exponentiated normal random variable has a Lognormal distribution). The Lognormal 

distribution is the asymptotic distribution of the product of random variables 

(McClelland's, 1979, cascade model is an example of a multiplicative model, see 

Ulrich & Miller, 1994, for more details). Hence, the Lognomal distribution can be 

motivated as an approximation to the finishing time of a series of stages with 

randomly varying rates (West & Shlesinger, 1990). Breukelen (1995) shows that two 

well know parallel models are also compatible with the Lognormal distribution.  

The Lognormal distribution is bounded below by zero (x>0) and has parameters 

corresponding to the normal distribution mean (µ) and standard deviation (σ>0). In 

order to allow for a lower bound greater than zero, we added a shift parameter, θ>0. 

The corresponding density, which is only defined for θ<x, is: 
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Ratcliff and Murdock (1976) reported that the shifted Lognormal provided as good a 

fit as the ex-Gaussian to RT distribution data from recognition memory experiments. 
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Figure 1b shows three examples of the Lognormal density. In order to specify the first 

three cumulants it is convenient to define ω = exp[σ2]:  
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The Wald distribution (Wald, 1947) can be motivated as a model of RT by a 

continuous approximation to the sequential acquisition of information.  Suppose that 

at each time step identical, normally distributed observations with mean µ>0 are 

accumulated. A decision to respond is made when the sum exceeds some criterion, 

a>0. Given µ<<a, the number of steps to exceed the criterion is approximately Wald 

distributed.  As described by McGill (1963), in the limit the discrete steps can be 

replaced by a continuous time variable, resulting in a diffusion process with an 

exactly Wald distributed stopping time. 

The Wald distribution is bounded below by zero (x>0). We added a shift 

parameter, θ>0, to allow for a lower bound greater than zero. The corresponding 

density, which is only defined for θ<x, is: 
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Figure 1c shows three examples of the Wald density. The first three cumulants are: 

κ1 = θ + a/µ   κ2 = a/µ3   κ3 = 3a/µ5 

The Wald distribution is also used with a different parameterisation in terms of 

its (un-shifted) mean, a/µ, and its “dispersion”, λ = a2. In this form the distribution is 

often called the “Inverse Gaussian” distribution3. When we tested this 

parameterisation with QMPE, we found that parameter estimates, particularly for λ, 

were very biased and inefficient. Hence, QMPE uses the “diffusion” parameterisation, 
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which also has the advantage of parameters being directly interpretable in terms of the 

information accumulation decision model.  

The final two distributions implemented in QMPE, the Weibull and Gumbel, are 

related in that they both occur as the asymptotic distribution of the minima of samples 

from sets of random variables (see Weibull, 1951 and Cousineau, Goodman & 

Shiffrin, 2002, for details): the Weibull arises from the minimum value of samples 

from random variables that are bounded below by zero, the Gumbel from random 

variables that are unbounded. Both distributions have two parameters but differ in that 

the Gumbel distribution is unbounded, whereas the Weibull distribution is bounded 

below by zero. As for the other distributions that are bounded below, QMPE adds a 

shift parameter, θ>0, to the Weibull.  

The Weibull distribution is a power transformation (with exponent c>0) of an 

exponential random variable (with mean τ>0) as is evident from its density: 

( ) ( )( )cxcc excxf τθθτ −−−− −= 1)(  

As for the other shift distributions, the density is only defined for θ<x. Figure 1d 

shows three examples of the Weibull density. The cumulants of the Weibull are 

expressed in terms of the incomplete Gamma function ( , x > 0) ( ) dtetx tx∫
∞ −−=Γ

0

1

( ))11
1 +Γ+= −cτθκ  

( ) ( )[ ]112 1212
2 +Γ−+Γ= −− ccτκ  

( ) ( ) ( ) ( )[ ][ ]311113
3 12121313 +Γ++Γ+Γ−+Γ= −−−− ccccτκ  

The Gumbel density is also named the Type I extreme value, the double-

exponential or the Fisher-Tippett distribution. It has only two parameters, one for 

location (µ) and one for scale (σ>0). 
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Figure 1e shows three examples of the Gumbel density. Its first three cumulants are: 

σµκ 57722.01 += , ( ) 62
2 σπκ = , and  3

3 40412.2 σκ =

The Fisher Skew of the Gumbel is fixed (γ1=1.13955) so does not have the flexibility 

to model changes in RT distribution skew. Although the Gumbel cannot be a general 

model of RT distribution, it was included in QMPE as it might have utility in special 

cases. Although we briefly report estimation results for the Gumbel our main focus is 

on estimation of shift distributions. 

Likelihood and Shifted Distributions 
The likelihood of a sample given a model is the joint probability of the data 

assuming the model. When the observations making up the data (xi, i=1…n) are 

sampled independently, the joint probability is given by the product of the 

probabilities for each observation. Maximum likelihood methods choose model 

parameter estimates that maximize the likelihood. However, when applied to 

continuous distributions, the conventional approach to maximum likelihood 

estimation maximizes the product of the densities for each observation, f(xi,Θ), rather 

than the product of their probabilities. This procedure is justified using an 

approximation to the probability of each observation:  

( ) ( ) ( ) i

hx

hx
iiii hxfdxxfhxXhx
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ii
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+
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Two assumptions must hold to ensure that maximising the product of the densities 

( ) is equivalent to maximising the joint probability.  First, the h(∏
=

n

i
ixf

1

,Θ) i (>0) must 

be small for the approximation to be accurate, and the approximation can be made to 
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)

be exact as the hi tend to zero. Second, the hi must be independent of Θ, so that the hi 

can be ignored in the maximization. We will refer to this approximation as CML. For 

computational reasons, estimates are usually found by maximising the log-likelihood, 

that is the sum of the logarithms of the densities, , which is equivalent 

to maximising their product. 

(∑
=

Θ
n

i
ixf

1

,ln

Unfortunately the assumptions underlying the CML approximation can fail in 

some cases, such as when the distribution’s range depends on its parameters, as is the 

case for shift distributions. When the shift parameter (θ) equals the smallest 

observation, CML log-likelihood is infinite as the density for the smallest observation 

x1 is zero (without loss of generality we assume the observations are ordered, 

x1≤x2≤…≤xn). In this case, CML estimates of the other parameters become 

inconsistent, in the sense that they do not tend to their true values as sample size 

increases. The singularity associated with θ=x1 is not a problem for iterative 

estimation methods if 1) log-likelihood has a local maximum (say at θL< x1) which 

yields consistent parameter estimates and 2) if the singularity is disconnected (i.e., 

log-likelihood decreases as θ approaches x1 from below on the interval θL≤x<x1). The 

singularity has been shown to be disconnected for the shifted Wald distribution 

(Cheng & Amin, 1981).  

For the shifted Lognormal and Weibull distributions the singularity is not 

always disconnected, so inconsistent estimates can be obtained when maximising the 

log-likelihood by iterative methods. This problem, which we will call the “unbounded 

likelihood problem”, occurs particularly for parameter values where the distribution is 

highly skewed and has a sharply increasing leading edge. For the Lognormal 
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distribution the unbounded likelihood problem is rarely a practical concern, as the 

increasing region is usually very small (cf. Giesbrecht & Kempthorne, 1976, Table 1), 

and a local maximum that produces consistent parameter estimates usually exists 

outside this region. Given good starting point estimates, iterative methods will 

converge on this local maximum and provide consistent parameter estimates, which 

are sometimes called “local maximum likelihood” estimates.  

For the Weibull distribution, however, the unbounded likelihood problem can 

cause more severe difficulties when estimating the highly skewed distributions 

produced by small values of the Weibull shape parameter, c. For c=1, the Weibull 

distribution is equivalent to the exponential distribution, which has a sharp and 

discontinuous leading edge. For c<1 even more skewed distributions with a shape 

similar to the exponential are obtained. For c>1 the distribution becomes less skewed 

and the increase of the leading edge is more gradual. Symmetry occurs for c≈3.6, and 

skew then becomes negative as c increases, approaching a lower bound Fisher 

skew≈-1.14. For c>2 for the singularity is disconnected. For c<2 the singularity is 

connected, but when c>1 a local maximum usually exists which produces consistent 

parameter estimates (Cheng & Amin, 1983). When c<1 no local minimum exists, so 

iterative estimation results in a shift estimate θ=x1 and inconsistent estimates of the 

other parameters. Similar conditions apply to the shifted Gamma, another distribution 

commonly used to model RT which also has the exponential distribution as a special 

case, for exactly the same values of its shape parameter (Cheng & Amin). Although 

not described here, a newer version of QMPE also fits the shifted Gamma distribution, 

and its parameter estimates behave similarly to those of the shifted Weibull.  
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Cheng and Amin (1983), and independently Ranneby (1984), suggested a 

solution to the unbounded likelihood problem, called the maximum product of 

spacings (MPS) method. MPS, like CML, obtains parameter estimates by maximising 

a goodness of fit (objective) function. The MPS objective function is proportional to a 

special case of the QMP objective function, and so produces identical estimates. As 

defined by Heathcote et al. (2002), QMP estimates are obtained by maximising the 

multinomial log-likelihood:  

(∑
=

m

j
jj DN

1

ln , where   (1) ( )∫
−

Θ=
j

j

q

q
ij dtxfD

ˆ

ˆ 1

,

The , j=1…m-1 are quantile estimates, ( , ) equals the domain of the 

distribution (which might depend on Θ), and each inter-quantile range ( , ) 

contains N

jq̂ oq̂ mq̂

1ˆ −jq jq̂

j observations (in general Nj may not be an integer).   

The MPS estimator is a special case of QMP4 where order statistics (i.e., xi) are 

used to estimate quantiles, Nj = 1 and m  = n. Titterington (1985) suggested a 

modified version of the MPS objective function that is proportional to the QMP1 

objective function examined by Heathcote et al. (2002).  By QMP1, we mean 

estimates obtained by maximising (1) and based on ( ) 2ˆ 1++= jjj xxq , j  = 1 … n-1, 

and Nj = 1. Heathcote et al. showed that QMP1 produced more efficient and less 

biased estimates than CML for the ex-Gaussian distribution. They also examined 

QMP4 estimates, where the data set is reduced to a set of (n/4)-1 equally spaced 

quantile estimates (for n = 4m, ( ) 2ˆ 144 ++= jjj xxq  and Nj = 4), and found similar 

estimation performance to CML, despite the fact that QMP4 is clearly not a sufficient 

estimator (i.e., it does not use all of the information contained in the data set).  
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Although Titterington (1985) suggested that MPS can be viewed as maximum 

likelihood estimation for grouped data, it is important to acknowledge that the 

equivalence is only approximate in finite samples, because (1) does not take into 

account the error associated with quantile estimates. However, when the range of the 

distribution is not parameter dependent, MPS and CML are asymptotically equal, as 

shown by Cheng and Amin (1983), so in this case MPS has all of the asymptotic 

sufficiency, consistency and efficiency properties of CML. When the range of the 

distribution is parameter dependent CML and MPS can behave quite differently. 

Importantly, both the original version of MPS and Titterington’s variation (i.e., 

QMP1) differ from CML in that they are not subject to the unbounded likelihood 

problem (Cheng & Iles, 1987). Hence, they continue to give consistent and efficient 

estimates even when CML completely fails. In fact, these estimates can become 

“super-efficient”, in the sense that estimation error decreases as sample size (n) 

increases at a rate faster than n-1/2.   

In summary, it is clear that the unbounded likelihood problem can cause CML 

to completely fail in cases where QMP continues to work well. It might be argued that 

such cases are of little interest for RT distribution fitting, as RT distributions rarely 

have a sufficiently sharp leading edge or degree of skew. We are not aware of any 

systematic investigation on this point, and caution that sampling error may cause the 

problem to occur in small samples even if the true distribution comes from a 

parameter region where CML does not fail. In any case, there is little point comparing 

the estimation performance of CML and QMP in such cases, as QMP will necessarily 

be superior. The parameters for the Monte Carlo study were chosen to avoid 

distributions associated with CML failure.    
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Monte Carlo Study 
The Monte Carlo study was modelled after the study reported by Heathcote et 

al. (2002). It had three aims: 1) to extensively test the QMPE code, 2) to compare the 

estimation performance of CML and QMP, and 3) to compare estimation performance 

among the five distributions fit by QMPE. Relatively small sample sizes were used 

(n=40, 80 or 160) in order to investigate performance under demanding and realistic 

conditions. QMP estimation was performed both using QMP1 and QMP4.  

For each distribution three sets of parameter values, given in Table 1, were used, 

(Figure 1 illustrates the corresponding densities). The parameters for the ex-Gaussian 

distribution were the three sets with medium levels of skew used by Heathcote et al. 

(2002). The choice of parameters for the other distributions was guided by fitting 

them to large samples from the three ex-Gaussian distributions, so that results are 

approximately comparable across distributions. As Table 1 shows, this procedure 

resulted in a fairly good match on means and standard deviations. Fisher Skew varied 

more between distribution types but covered approximately the same range, except for 

the Weibull where skew was generally lower, and the Gumbel distribution, where 

skew is fixed. The smallest value of the Weibull shape parameter investigated (c=1.5) 

was large enough to avoid CML failure due to the unbounded likelihood problem 

even in the smallest samples.  

Examination of Figure 1 indicates that shift estimation in the least skewed cases 

(labelled 1 in the figure) of the Lognormal and Wald distributions will be challenging, 

because they have long thin left tails. Such tails make estimation of the shift 

parameters difficult because samples near the lower bound are rare, and the sampled 

values of the first order statistic (x1) are highly variable. As a result, shift estimates are 
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likely to be biased upward and to be more variable for these cases in the Monte Carlo 

study, particularly in small samples.  

Methods 
For each distribution type and the nine combinations of sample size and 

parameter set, 10000 replicates were fit, with the same samples fit by CML, QMP1 

and QMP4. The simulated samples were obtained using random number generators 

provided by the S-plus statistical package5, and were rounded to the nearest integer. 

QMPE uses the same numerical methods as QMLE (see Brown & Heathcote, 

2003, for more details). CML and QMP estimates are obtained by a conjugate 

gradient optimisation algorithm. This algorithm requires analytic expressions for the 

gradient of the objective function. However, QMPE requires only analytic gradients 

for the density; gradients for CML and QMP are automatically computed from the 

density gradients. Once search is complete, analytic expressions for the Hessian 

(second derivative matrix) of the density are used to estimate approximate parameter 

standard errors and correlations (see Brown & Heathcote, 2003, for a proof that these 

estimates are asymptotically correct for QMP). Although derivative free optimisation 

methods are available, we have found that analytic gradients greatly speed estimation 

and that analytic Hessians result in better standard error and correlation estimates.  

QMPE automatically obtains starting points for optimisation by substituting 

method of moments’ estimates of cumulants into the equations relating cumulants and 

parameters. However, this approach fails when sample estimates of skew are negative. 

In such cases heuristics are used to estimate starting points. For the three distributions 

with a shift parameter, the heuristic estimates the shift as slightly smaller than the 

minimum value in the sample (e.g., , where 0<p<1 is an appropriately 

chosen constant), then solves for the other parameters using the first two moments 

1
ˆ xp ×=θ
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calculated on x - . The heuristic is always used for the Lognormal, which we found 

rarely works with the full method of moments approach. As it has only two 

parameters, Gumbel start points are obtained from only the first two cumulants. Users 

can also supply their own starting points.  

θ̂

Good automatic starting point estimates are essential when large numbers of 

conditions must be fit, and particularly for the shifted distributions when only the 

local CML solution is useful. QMPE’s start point heuristics were fine tuned 

throughout the course of the Monte Carlo study. We have also found them to work 

well in real RT data.  

The stopping criteria for optimisation were set at a proportional objective 

function exit tolerance of 10-9, a proportional parameter change tolerance of 10-5, and 

the maximum number of search iterations was fixed at 250 (see Brown & Heathcote, 

2003, for details on these settings), resulting in parameter estimates accurate to more 

than four significant figures. For all parameters bounded below by zero QMPE sets 

the objective function to a low value when the estimate is less than 10-9, which 

ensures both that the bound is respected and that numerical errors do not occur. For 

distributions with shift parameters, these parameters were also restricted to less than 

the sample minimum for CML fits and less than the minimum quantile for QMP fits.   

Results 
Estimation Failures 

Only 50 fits out of the 1.35 million performed failed to produce usable 

parameter estimates, indicating that the starting point heuristics are robust. As shown 

in Table 2, estimation of parameter standard errors and correlations failed at a greater 

(but still low) rate, because the Hessian was not invertible (i.e., not positive-definite). 

For brevity, Table 2 averages over parameter sets and sample sizes, and omits results 
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for the Gumbel, which never failed. Generally, better performance was obtained with 

larger samples and for more skewed distributions. QMP4 estimation for the 

Lognormal stands out as producing many more failures than the other cases, 

indicating that, if parameter standard error and correlation estimates are required for 

the Lognormal, higher levels of grouping should be avoided.  

Bias and Efficiency 

Bias was estimated as the difference between the mean of the Monte Carlo 

parameter estimates and the true value, with positive values indicating over estimation 

and negative values indicating underestimation. Efficiency was estimated by the 

standard deviation (SD) of the parameter estimates. Estimates are described as 

“consistent” if the magnitude of bias decreases and efficiency increases as sample size 

increases. Tables 3-5 contain the bias and efficiency estimates for the shift 

distributions’ parameters.   

In order to compare estimation performance across distributions, it is useful to 

recognise that the shift parameters (θ), and the Weibull scale parameter (τ), have the 

same units as the data. For these parameters relative estimation performance can be 

judged on the same scale. Estimation performance can also be judged for all 

parameters as a proportion of their true values, which are given in Table 1.  

The results for the ex-Gaussian distribution replicated Heathcote et al. (2002) 

with only a slightly different methodology (i.e., rounded samples from a different 

random number generator), and are omitted for brevity, as is a detailed discussion of 

the results for the Gumbel distribution, which were uniformly good in all cases and 

for all estimation methods6. In contrast to the Gumbel and ex-Gaussian estimates, 

estimates for the shift distributions were very poorly behaved in some cases. That is, 
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estimates were very biased, not always consistent (i.e., bias could increase and 

efficiency decrease with sample size) and the parameter estimate distributions were 

not even approximately normal. 

The Lognormal estimates were best behaved amongst the shift distributions in 

terms of consistency and distributions. Parameter estimate distributions were mainly 

uni-modal, with the exception of CML estimates for the least skewed distribution at 

the smallest sample size, which had small second modes overestimating θ and 

underestimating µ. For all estimation methods, the parameter estimate distributions 

were slightly skewed, particularly for small sample sizes, to the left for θ and to the 

right for µ and σ.  

As shown in Table 3, bias was generally upward for θ and σ and downward for 

µ. Bias in all parameters was substantial for the least skewed distribution, even for the 

largest sample, and small for the other two distributions at all sample sizes. The least 

skewed distribution has a small shift parameter (475) and a long left tail. As is evident 

from Figure 1, sampled values less than 750 are rare, resulting in a strong upward bias 

in shift estimates even for larger sample sizes. Estimation efficiency and bias were 

consistent in all cases, except for a few cases occurring when bias was negligible, 

likely due to Monte Carlo error.  CML was generally the least biased, and QMP1 the 

most efficient.  

For the Wald distribution, parameter estimate distributions were generally uni-

modal but could also be heavy tailed. All parameter estimate distributions contained 

extreme underestimates for shift and overestimates for µ and a, but the main body of 

the distribution tended to be skewed in the opposite direction, particularly for smaller 

samples and for CML. As shown by bias values in Table 4, the shift parameter of the 
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least skewed Wald distribution was generally overestimated, whereas for the most 

skewed distribution it was generally underestimated. For the other parameters the 

opposite pattern generally applied, underestimation for the least skewed and 

overestimation for the most skewed distribution. Bias was particularly pronounced in 

CML estimates for the least skewed distribution. This bias was not due to extreme 

outliers; the same pattern occurred when the central tendency of the parameter 

estimate distribution was estimated by its median. Bias was consistent for all but 

CML estimates for the most skewed distribution and QMP4 estimates for the least 

skewed distribution, but the inconsistency was relatively small. Efficiency estimates 

were consistent and CML estimates were clearly more efficient than QMP estimates. 

However, CML was more biased than QMP1 estimates, particularly for the least 

skewed distribution. Hence, CML parameter estimate distributions are less variable, 

but tend to be centred on a biased estimate of the true parameter value. 

For the Weibull distribution, bias was substantially smaller for the more skewed 

Weibull distributions. For these cases, QMP estimates, particularly QMP1 estimates, 

were less biased than CML estimates. For the least skewed distribution CML 

estimates were substantially less biased than QMP estimates. However, even for CML 

bias was substantial for the smallest sample size. For all distributions CML estimates 

were the most efficient, although the advantage over QMP1 was relatively small for 

the more skewed distributions, particularly at larger sample sizes. QMP4 was clearly 

the least efficient method, particularly for smaller sample sizes. 

Weibull parameter estimate distributions were almost always bimodal to some 

degree for the least skewed case, although the second mode tended to disappear as 

sample size increased. The second mode always underestimated shift (θ) and 

overestimated the scale (τ) and shape (c) parameters. Estimates fell in the second 
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mode mainly for samples with negative Fisher Skew. The Weibull distribution can 

have negative Fisher Skew, which slowly approaches a bound of approximately –1.14 

for large values of c. For example, Fisher Skew values are -0.08, -0.6, -1, -1.1 and 

-1.13 for c = 4, 10, 100, 1000 and 10000 respectively. These results indicate that 

caution should be exercised when fitting the Weibull to samples with negative Fisher 

Skew.  

Estimates in the deviant mode usually had non-invertible Hessians, indicating 

that the neighbourhood of the solution is not locally quadratic. When estimates with 

non-positive-definite Hessians were censored, bias was reduced although not 

eliminated. Hence, it appears that censoring estimates with ill conditioned Hessians 

can improve overall estimation performance for the Weibull. An alternative approach 

is to bound the estimate of c during estimation, a strategy that can be easily 

implemented by modifying and re-compiling the QMPE open-source code. We 

obtained improved bias and efficiency using an upper bound of 10, but this resulted in 

even more clearly bimodal parameter estimate distributions with estimates “piling up” 

against the bound.  

Estimating Fisher Skew 

Ratcliff and Murdock (1976) used CML to fit the ex-Gaussian distribution in 

order to estimate RT distribution skew. Ratcliff (1978) pointed out that that estimates 

of skew based on the method of moments are both inefficient and non-robust. Hence, 

unrealistically large sample sizes are required for precise estimates and estimates can 

be greatly distorted by even small levels of outlier contamination. In this section we 

compare the indirect method of calculating Fisher Skew from CML and QMP1 

parameter estimates with direct estimates obtained from the method of moments. 
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Skew estimates for all three-parameter distributions (i.e., those with variable skew) 

are shown in Figure 2. Results are expressed as a percentage of the true Fisher Skew 

value, and absolute values of bias are given in order to make comparison easier. 

For the ex-Gaussian distribution both CML and QMP1 estimates were less 

biased and more efficient than method of moments estimates, with QMP1 having 

clearly less bias than CML for the least skewed distribution. Efficiency was 

comparable for CML and QMP1, and clearly better than method of moments except 

for the least skewed distribution and smallest sample size. For the Lognormal, the 

method of moments estimates were much less biased than CML and QMP1 for the 

least skewed distribution, but more biased for the more skewed distributions. 

Generally, the methods of moments estimates are less efficient than CML and QMP1, 

except for the smallest sample size and more skewed distributions.   

For the Wald distribution, the method of moments estimates were least efficient 

and CML estimates most efficient. However, CML estimates were the most biased, 

particularly for the least skewed distribution, with QMP1 the least biased overall. For 

the least skewed Weibull distribution the method of moments were the least biased 

and most efficient, although all estimation methods displayed poor efficiency due to 

bimodal parameter estimate distributions. Efficiency problems may have been 

exaggerated by the use of a percentage measure, as Fisher Skew was smaller for the 

Weibull than for other distributions in the least skewed case. Estimation performance 

was much better for the more skewed distributions with QMP1 the best overall.  

The results presented in Figure 2 provide a basis for comparing estimation 

performance among distributions with variable skew. Clearly CML and QMP1 fits of 

the ex-Gaussian distribution provide better skew estimates than the method of 

moments at all levels of skew. QMP1 and CML are also generally superior for the two 
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more skewed cases of the other distributions. For the least skewed case, however, the 

method of moments generally outperforms QML1 and CML, reflecting the estimation 

difficulties for this case noted in the last section.  

Discussion 
The results of the Monte Carlo study confirmed that QMP is generally superior 

to CML for the two distributions with an unbounded range, the ex-Gaussian and 

Gumbel. CML and QMP are on a more equal footing for the shift distributions when 

Fisher Skew is greater than one, although it should be remembered that for more 

extreme skew CML can fail entirely for the Lognormal and Weibull distributions, due 

to the unbounded likelihood problem.  

No method worked very well for the least skewed Lognormal, Wald and 

Weibull distributions, particularly for smaller sample sizes. Overestimation of shift 

for the Lognormal and Wald distributions results from their long thin left tails in the 

least skewed cases. Overestimation in these cases may be difficult to avoid because 

information about the shift value is very variable. Hence, QMPE parameter estimates 

for these distributions should be interpreted with caution when Fisher Skew is less 

than one.  

Underestimation of shift for the Weibull appears to be related to a non-quadratic 

maximum for both CML and QMP, as indicated by ill-conditioned Hessian estimates. 

Removal of cases with ill-conditioned Hessians improved performance. Heathcote (in 

press) noted similar behaviour for CML estimates of Wald distributions in small 

samples (n = 40), and suggested that estimates with ill-conditioned Hessians should 

be censored when using his software. However, censoring QMPE Wald estimates 

with ill-conditioned Hessians did not reduce bias appreciably. In contrast, when 

Heathcote’s optimisation methods (the Splus nlminb algorithm using analytic first and 
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second derivatives) were applied to the Wald data from the present Monte Carlo 

study, bias was almost eliminated by censoring. Unfortunately reduced bias was 

bought at the cost of reduced efficiency relative to the QMPE estimates.  

Cheng and Iles (1990) provide an explanation for these difficulties, called the 

“embedded models” problem. They showed that each of the shift distributions fit by 

QMPE has a special case as shift approaches -∞, which they call an “embedded” 

distribution. The embedded distributions (normal for all but the Weibull, which has an 

embedded left skewed Gumbel distribution) have only two parameters, a scale 

parameter and a location parameter. When the embedded model fits as well as the 

shift model it indicates that the sample does not contain sufficient information to 

estimate shift or shape; instead only location and scale can be reliably estimated. 

Because the embedded model occurs at an infinite parameter value, iterative 

estimation of the shift model is difficult, and estimates for all of its parameters 

become unreliable.  

The bimodality and underestimation of shift seen in the QMPE Weibull 

parameter estimates appears to be due to the embedded model problem. Similar 

problems found here for some QMP4 estimates produced by QMPE and by Heathcote 

(in press) for CML estimates of the shifted Wald appear to be examples of the 

embedded model problem. Heathcote’s Wald estimates were probably more prone to 

this problem than QMPE Wald estimates because his fitting routine used analytic 

Hessians, and so was more sensitive to the non-quadratic maximum produced by the 

embedded model problem. 
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General Discussion 
In this paper we have described and tested QMPE, an open source ANSI 

standard Fortran 90 program, which can estimate the parameters of five continuous 

density functions commonly used to model RT. QMPE can fit these distributions 

using continuous maximum likelihood (CML), perhaps the most widely used and 

recommended method of estimating RT distribution (Heathcote, 1996; Van Zandt, 

2000). It can also fit these distributions using Heathcote et al.’s (2002) quantile 

maximum probability (QMP) method.  

A Monte Carlo study replicated Heathcote et al.’s (2002) finding that QMP 

produces less biased and more efficient parameter estimates than CML for the ex-

Gaussian distribution. QMP was also found to produce less biased, but also slightly 

less efficient, parameter estimates than CML for the Gumbel distribution. Overall 

estimation performance was excellent for both distributions, as might be expected in 

the idealized situation represented by the Monte Carlo study; fitting the true data 

generating model to uncontaminated data. Of course, real RT data does not conform 

to this ideal, but at least the excellent performance under ideal conditions is reassuring 

for the practical application of QMPE.   

The ex-Gaussian and Gumbel distributions have an unbounded range. This 

might be seen as a disadvantage when they are used to model RT data, because RT 

data must be bounded below by a positive value. QMPE also fits three “shift” 

distributions, which have a positive, parameter dependent lower bound, and so seem 

more promising as models of RT.  Unfortunately, estimation performance for the shift 

distributions was much worse than for the ex-Guassian or Gumbel. One reason for 

fitting parametric distributions to RT data is to obtain a more reliable estimate of skew 

than is provided by the methods of moments (Ratcliff, 1978). If QMPE is used for this 
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purpose we suggest that the ex-Gaussian be fit (the Gumbel has fixed skew and so is 

not useful for this purpose). At least when the ex-Gaussian is an accurate 

approximation to the data, this approach is more efficient and less biased than the 

method of moments. The shift distributions, in contrast, did not consistently 

outperform the method of moments, and for less skewed distributions and small 

sample sizes they could produce substantially worse skew estimates.  

One reason why the ex-Gaussian outperforms the shift distributions might be 

the parameterisations used by QMPE, and most packages aimed at fitting RT 

distribution (see Cousineau, Brown & Heathcote, submitted). The ex-Gaussian has its 

least skewed (Gaussian) form when its exponential parameter approaches zero. The 

shift distributions have their least skewed form when the shift parameter approaches 

-∞. In small samples, the least skewed case may often be most appropriate because 

the data contain mainly information about location and scale. Because this case occurs 

as the shift parameter diverges, parameter estimates for the shift distributions become 

unreliable, whereas this does not happen for the ex-Gaussian.  

Cheng and Iles (1990) suggested solving this problem, which they dubbed the 

“embedded model problem”, by using a parameterisation of the shift distributions 

where the least skewed case occurs at a zero rather than infinite value of one 

parameter (see their Table 1). We have implemented and are tested Cheng and Iles 

parameterisation in a new version of the QMPE software. However, little 

improvement in estimation performance was obtained, even after censoring cases with 

negative shift estimates, or cases where the full model did not fit significantly better 

than the embedded model. We suggest that users of the existing version of QMPE, 

and similar software, exercise caution in interpreting parameter estimates from small 

samples, particularly those with negative skew or Hessians that are not invertible. We 
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are presently investigating the use of hierarchical models to address these difficult 

cases. Hierarchical models implement “soft bounding” on parameter estimates by 

assuming that parameters are drawn from a population distribution with an assumed 

form (see Rouder, Lu, Speckman, Sun & Jiang, in press, for a Bayesian approach to 

hierarchical Weibull estimation). 

The embedded model problem occurs for data with low skew. Highly skewed 

data can also cause a problem, called the “unbounded likelihood problem”, for CML 

estimation of the shifted Weibull and Lognormal distributions. The problem occurs 

because the likelihood maximum occurs when the shift parameter equals the 

minimum observed value. Although this might seem like a plausible estimate of shift, 

estimates of the remaining parameters are inconsistent. QMP does not suffer from the 

unbounded likelihood problem and so remains useful for highly skewed data. Hence, 

when skew is high, we recommend QMP fitting over CML fitting. QMP might also be 

useful in other contexts, such as fitting mixtures (e.g., Dolan et al., 2002), as they can 

also be subject to the unbounded likelihood problem (Cheng & Traylor, 1995). 

In the course of this investigation we discovered that QMP has a special case 

called the maximum of product spacings (MPS), which was advocated by Cheng and 

Amin (1983) and Ranneby (1984) as a means of overcoming the unbounded 

likelihood problem. Their work proves that MPS has all of the desirable asymptotic 

properties of CML when CML estimates exist, and continues to work well when CML 

fails. Further consideration of the MPS and its generalizations (e.g., Ekstrom, 2001) is 

beyond the scope of the present work. However, this literature places QMP on a firm 

theoretical footing, not just as an approximation to likelihood, also as a goodness of fit 

measure that can be derived from information theory (see also Speckman & Rouder, 

in press; Heathcote & Brown, in press).     
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Footnotes 

 

1Source code, Linux and Windows binaries, a manual and sample instruction and data files can be 

obtained from either of the second and first author’s websites: http://oz.ss.uci.edu/  and 

http://www.newcastle.edu.au/school/behav-sci/ncl/. These supplementary materials have also been 

accepted for the Psychonomic Society Norms, Stimuli, and Data Archive, available after August 1, 

2004, at http://www.psychonomic.org.  
2Heathcote et al. (2000) described their method as “quantile maximum likelihood” (QML).  Speckman 

and Rouder (in press) pointed out that that QML is not maximum likelihood, and so Heathcote and 

Brown (in press) renamed the method “quantile maximum probability” (QMP).  

3This parameterisation is convenient when shift does not have to be estimated, as analytic maximum 

likelihood estimates are available for both the mean (the arithmetic mean) and ( ) nx
n

i
i∑

=

−− −=
1

1
1

1 ˆˆ κλ1 . 

When shift is estimated, iterative methods are required, but computational cost can be reduced using 

“profile likelihood” (a line search on the shift parameter with other parameters estimated analytically).  

4 We reserve the term QMP for the general procedure that maximizes (1) based on a set of quantile 

estimates obtained in an unspecified manner. Many different quantile estimators are available (see 

Hyndman & Fan, 1996, for a review). Although these estimators are asymptotically equivalent they 

differ in finite samples and so can result in differing parameter estimates in practice. In the QMPE 

software we implemented the quantile estimator specified in Heathcote et al. (2002), which produces 

QMP1 and QMP4 estimates as special cases and corresponds in general to Hyndman and Fan’s 

definition 5. Although we have found this estimator works well, QMPE can be used with other quantile 

estimators by providing the estimated quantile values rather than raw data as input to the program.  

5By default S-plus has functions to generate samples from all distributions fit by QMPE except the 

Wald. Wald random deviates were obtained using an S-plus function that uses the Inverse Gaussian 

parameterisation (available at http://www.statsci.org/s/invgauss.s). Heathcote (in press) provides an S-

plus Wald random number generator using the diffusion parameterisation. 

6 All estimation methods were consistent for the Gumbel, with negligible bias and good efficiency 

(SD<15) for all sample sizes, estimation methods and parameters, with a slight improvement for the 

less variable distributions. QMP was less biased than CML, but in contrast to findings with the ex-
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Gaussian distribution, QMP4 was less biased than QMP1. CML and QMP1 were almost equal in 

efficiency with QMP4 being slightly less efficient in some cases. The results indicate that all three 

methods should be useful in practice with samples as small as 40 observations and perhaps less. 
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Tables 
Table 1.  Parameters of distributions used in the Monte Carlo study, and associated 

moment statistics. 

 Set     µ    σ    τ Mean SD  γ1

1 929.289 70.711 70.711 1000 100.000 0.7071  

2 910.557 44.721 89.443 1000 100.000  1.4311  

 

Ex-Gaussian 

3 905.132 31.623 94.868 1000 100.000  1.7076  

  θ  σ µ  Mean SD  γ1

1 470 0.18 6.25 996.47 95.538 0.5504 

2 745 0.36 5.45 993.34 92.379 1.1674 

 

Lognormal 

3 800 0.48 5.15 993.49 98.488 1.6590 

  θ µ a Mean SD  γ1

1 625 0.1886 70.711 1000 102.698 0.8216 

2 725 0.1626 44.721 1000 101.973 1.1124 

 

Walda

3 800 0.1414 28.284 1000 100.000 1.5000 

  θ τ c Mean SD  γ1

1 700 315 3.2 982.13 96.772 0.1064 

2 800 220 2.0 994.97 101.915 0.6311 

 

Weibull 

3 840 170 1.5 993.47 104.200 1.0720 

  µ σ - Mean SD  γ1

1 955 85 - 1004.06 109.017  1.1396 

2 955 74 - 997.71 94.909 1.1396 

 

Gumbel 

3 955 68 - 994.25 87.213 1.1396 
a The samples were generated using the Inverse Gaussian parameterization, with 

(mean,λ) = (375,5000), (275,2000) and (200,800) for sets 1 to 3 respectively. 
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Table 2. Percentages of fits with invertible Hessian estimates. 

 Ex-Gaussian Lognormal Wald Weibull 

CML 98.4 100.0 93.4 98.7 

QMP1 98.8 95.2 98.9 96.2 

QMP4 96.0 59.0 99.7 94.8 
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Table 3. Bias (Monte Carlo mean – true value) and efficiency (SD) for Lognormal 

parameter estimates 

   Distribution 1 Distribution 2 Distribution 3 

   40 80 160 40 80 160 40 80 160 

CML 131.1 128.8 103.1 -2.4 -1.8 -3.4 -5.1 -1.3 -1.5 

QMP1 140.4 124.2 117.3 -4.4 -2.3 -1.4 -9.0 -5.6 -5.0 

 

θ 

QMP4 171.3 142.4 118.8 -3.5 -3.5 -2.3 -16.9 -8.7 -5.1 

CML 0.082 0.071 0.051 0.028 0.016 0.005 0.020 0.013 0.002 

QMP1 0.091 0.072 0.063 0.029 0.015 0.007 0.015 0.004 -0.004 

 

σ 

QMP4 0.126 0.087 0.066 0.054 0.020 0.008 0.029 0.006 -0.002 

CML -0.355 -0.320 -0.242 -0.053 -0.027 -0.006 -0.028 -0.020 -0.003 

QMP1 -0.373 -0.310 -0.283 -0.037 -0.019 -0.008 0.003 0.011 0.018 

 

 

B 

I 

A 

S 

 

µ 

QMP4 -0.479 -0.366 -0.292 -0.075 -0.025 -0.009 0.003 0.015 0.015 

CML 120.8 84.8 70.4 75.7 57.6 45.0 54.9 36.4 22.4 

QMP1 108.9 91.3 78.6 73.8 52.7 35.9 52.4 34.7 23.9 

 

θ 

QMP4 116.5 99.3 87.5 91.0 62.2 41.6 75.5 45.1 27.5 

CML 0.091 0.058 0.038 0.135 0.096 0.069 0.156 0.107 0.072 

QMP1 0.088 0.061 0.045 0.128 0.089 0.061 0.150 0.104 0.074 

 

σ 

QMP4 0.128 0.073 0.054 0.182 0.108 0.069 0.212 0.128 0.082 

CML 0.333 0.228 0.168 0.346 0.254 0.191 0.322 0.221 0.146 

QMP1 0.313 0.239 0.193 0.328 0.234 0.162 0.309 0.213 0.152 

 

 

 

 

SD 

 

µ 

QMP4 0.381 0.272 0.223 0.424 0.277 0.186 0.426 0.267 0.171 
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Table 4. Bias (Monte Carlo mean – true value) and efficiency (SD) for Wald 

parameter estimates 

   Distribution 1 Distribution 2 Distribution 3 

   40 80 160 40 80 160 40 80 160 

CML 107.2 95.4 87.6 28.6 21.4 16.2 -19.9 -24.7 -29.3 

QMP1 15.0 7.3 3.4 -15.3 -10.9 -6.7 -21.8 -18.4 -17.3 

 

θ 

QMP4 -8.8 11.0 11.0 -42.8 -14.1 -6.9 -40.8 -21.3 -15.5 

CML -0.039 -0.036 -0.034 -0.009 -0.008 -0.006 0.017 0.017 0.018 

QMP1 -0.013 -0.009 -0.004 0.003 0.003 0.003 0.012 0.010 0.009 

 

µ 

QMP4 -0.006 -0.009 -0.007 0.010 0.003 0.002 0.018 0.011 0.009 

CML -30.64 -28.17 -26.18 -6.93 -5.46 -4.17 6.53 7.26 8.21 

QMP1 -5.45 -2.96 -1.14 5.28 3.80 2.62 6.85 5.27 4.67 

 

 

B 

I 

A 

S 

 

a 

QMP4 6.08 -2.84 -3.19 15.62 4.81 2.58 13.04 6.23 4.37 

CML 31.9 26.2 21.7 27.8 20.8 15.0 19.4 13.1 9.9 

QMP1 104.8 86.4 65.7 83.1 59.0 42.9 51.6 29.8 21.1 

 

θ 

QMP4 167.0 101.7 75.6 144.3 74.0 48.5 94.6 42.6 24.9 

CML 0.018 0.012 0.009 0.020 0.013 0.010 0.022 0.015 0.011 

QMP1 0.030 0.024 0.020 0.033 0.025 0.020 0.033 0.022 0.016 

 

µ 

QMP4 0.048 0.031 0.022 0.048 0.029 0.021 0.044 0.026 0.017

CML 7.16 5.18 4.24 7.29 5.00 3.78 5.86 3.86 2.90 

QMP1 28.93 25.00 19.12 23.96 17.12 12.83 15.39 8.85 6.05 

 

 

 

 

SD 

 

a 

QMP4 53.45 30.81 22.46 46.85 21.92 14.15 31.21 12.92 6.95 
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Table 5. Bias (Monte Carlo mean – true value) and efficiency (SD) for Weibull 

parameter estimates 

   Distribution 1 Distribution 2 Distribution 3 

   40 80 160 40 80 160 40 80 160 

CML -25.8 -9.2 -3.1 4.7 5.2 4.0 6.7 4.4 2.7 

QMP1 -90.6 -46.6 -17.5 -3.6 0.2 1.2 2.2 1.8 1.0 

 

θ 

QMP4 -95.9 -95.0 -44.5 -28.1 -3.8 1.9 -5.0 1.8 1.6 

CML 24.4 8.3 2.6 -6.9 -6.8 -5.0 -9.6 -6.6 -3.9 

QMP1 91.2 47.3 17.9 0.4 -2.0 -2.9 -7.1 -6.2 -5.0 

 

τ 

QMP4 94.9 96.5 45.3 25.5 2.0 -3.5 1.8 -4.6 -4.1 

CML 0.47 0.17 0.06 0.01 -0.03 -0.04 -0.06 -0.05 -0.03 

QMP1 1.15 0.58 0.21 0.07 0.01 -0.02 -0.02 -0.03 -0.02 

 

 

B 

I 

A 

S 

 

c 

QMP4 1.25 1.14 0.52 0.40 0.06 -0.02 0.10 -0.02 -0.02 

CML 160.6 93.9 47.0 44.9 20.5 11.5 14.4 7.1 4.1 

QMP1 251.7 168.7 78.0 68.5 22.7 13.1 22.2 8.0 4.6 

 

θ 

QMP4 299.8 258.7 171.6 166.8 63.4 20.8 73.3 13.7 6.7 

CML 167.0 98.8 50.7 53.9 27.7 16.6 26.4 16.3 10.9 

QMP1 262.1 175.7 81.6 76.7 30.5 19.3 32.1 17.4 11.7 

 

τ 

QMP4 308.9 268.1 177.9 173.8 68.8 26.0 78.8 21.1 12.4 

CML 2.24 1.25 0.62 0.70 0.34 0.20 0.33 0.18 0.11 

QMP1 3.24 2.11 0.97 0.97 0.36 0.22 0.39 0.18 0.12 

 

 

 

 

SD 

 

c 

QMP4 3.86 3.14 2.02 2.22 0.84 0.30 1.10 0.25 0.14 

 

 34



QMPE: Penultimate draft, in press, Behavior Research Methods, Instruments and Computers, 2004 

 

Acknowledgements 
Thanks to Professor Doug Mewhort for providing computing resources and to 

reviewers for their helpful suggestions. This work was supported by Australian 

Research Council Grants to S. Andrews and A. Heathcote and to A. Heathcote, B. 

Hayes and D.J.K. Mewhort.   

 35



QMPE: Penultimate draft, in press, Behavior Research Methods, Instruments and Computers, 2004 

 

Figure Captions 
Figure 1: Distributions used in the Monte Carlo study. Table 1 gives the parameters 

corresponding to the distributions marked 1, 2 and 3. 

Figure 2. Mean absolute bias and efficiency (SD) for Fisher Skew estimates, as a 

percentage of the true value, estimated using the method of moments, CML and 

QMP1. 
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Figure 1 (continues) 
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Figure 1 (continued) 
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Figure 2 (continues)
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Figure 2 (Continued)
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Figure 2 (Continued)
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Figure 2. 
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